Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153664

RESUMO

The malignant growth and metastatic potential of non-small-cell lung cancer (NSCLC) are the major causes for its poor prognosis. ATP-binding cassette (ABC) subfamily A member 8 (ABCA8) exerts contradictive roles in the development of several cancers. Nevertheless, its role in NSCLC remains unclear. In this study, three GEO datasets and bioinformatics databases (GEPIA2 and UALCAN) revealed the obvious down-regulation of ABCA8 in NSCLC tissues and cells, and this expression was associated with cancer stages and lymph node metastasis. Low expression of ABCA8 predicted poor survival in NSCLC. ABCA8 elevation inhibited cell proliferation and induced cell apoptosis. Moreover, ABCA8 overexpression suppressed cancer cell invasion. Mechanistically, ABCA8 was associated with TCF21 in NSCLC specimens and its overexpression enhanced TCF21 expression. ABCA8 elevation inactivated the PI3K/AKT signaling, which was reversed after TCF21 knockdown. Additionally, targeting TCF21 overturned the anti-oncogenic effects of ABCA8 elevation on cell proliferation, apoptosis and invasion. Thus, the current findings highlight that ABCA8 may be a promising prognostic marker and may act as a suppressor gene to regulate the malignancy of NSCLC cells via TCF21-mediated inactivation of PI3K/AKT signaling, supporting a new promising target for the treatment of NSCLC.

2.
Sensors (Basel) ; 23(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37112192

RESUMO

Noncontact voltage measurement has the advantages of simple handling, high construction safety, and not being affected by line insulation. However, in practical measurement of noncontact voltage, sensor gain is affected by wire diameter, wire insulation material, and relative position deviation. At the same time, it is also subject to interference from interphase or peripheral coupling electric fields. This paper proposes a noncontact voltage measurement self-calibration method based on dynamic capacitance, which realizes self-calibration of sensor gain through unknown line voltage to be measured. Firstly, the basic principle of the self-calibration method for noncontact voltage measurement based on dynamic capacitance is introduced. Subsequently, the sensor model and parameters were optimized through error analysis and simulation research. Based on this, a sensor prototype and remote dynamic capacitance control unit that can shield against interference are developed. Finally, the accuracy test, anti-interference ability test, and line adaptability test of the sensor prototype were conducted. The accuracy test showed that the maximum relative error of voltage amplitude was 0.89%, and the phase relative error was 1.57%. The anti-interference ability test showed that the error offset was 0.25% when there were interference sources. The line adaptability test shows that the maximum relative error in testing different types of lines is 1.01%.

3.
Food Funct ; 13(23): 12144-12155, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36326009

RESUMO

Lactobacillus rhamnosus GG (LGG) is a well-known probiotic widely used in foods and drugs. It has been reported that LGG can improve bowel dysfunction in gastrointestinal motility disorders, such as constipation; however, the specific mechanisms remain unclear. The colonic mucus layer is mainly composed of mucin secreted by goblet cells, which plays important roles in lubricating colonic contents and maintaining normal defecation function. It has been reported that increased mucin production is beneficial for relieving constipation symptoms. In this study, we aimed to investigate the role of LGG in regulating intestinal mucin production and the associated mechanisms. Six-week-old C57BL/6J mice were randomized into 3 groups, and were treated with De-Man Rogosa and Sharpe broth (MRS group), tegaserod maleate (tegaserod group) and LGG supernatant (LGGs group) by gavage, respectively. After treatments, defecation parameters, intestinal mucin-2 (MUC2) and serotonin 4 receptor (5-HT4R), goblet cells, and microbiota composition of the mice in each group were assessed. In comparison with the MRS group, higher fecal water content and increased fecal pellet number were found in the tegaserod group and LGGs group. Moreover, LGGs increased the number of goblet cells and upregulated the expression of 5-HT4R and MUC2 in the mouse colon. In addition, Alcian Blue Periodic acid Schiff staining showed that activated 5-HT4R enhanced intestinal MUC2 secretion. Further exploration of the mechanism discovered that LGGs upregulated intestinal S100A10, which was found to be involved in regulating 5-HT4R expression. Furthermore, gut microbiota analysis showed the higher abundance of Alistipes, Allobaculum, Desulfovibrio, and Clostridium XlVa in the LGGs group, which have been reported to be involved in regulating gut motility and the intestinal barrier, and alleviating bowel dysfunction. Interestingly, gut dysbiosis was present in the tegaserod group. It is noteworthy that the fecal microbiota transplanted from LGGs-treated mice significantly improved the gut dysmotility in a constipation mouse model. Our results suggested that LGGs could upregulate 5-HT4R to promote MUC2 production, as well as modulate the gut microbiota, thus improving the defecation function in mice. This finding might provide evidence for the application of diet supplementary LGG in relieving gastrointestinal motility disorders.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Animais , Lacticaseibacillus rhamnosus/metabolismo , Mucinas/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Mucina-2/genética , Mucina-2/metabolismo , Probióticos/uso terapêutico , Enteropatias/metabolismo , Constipação Intestinal
4.
Sensors (Basel) ; 21(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34770690

RESUMO

At present, the detection of transformer winding deformation faults is carried out in an offline state, which requires the transformer to cooperate with the implementation of planned power outages, or it takes place after the sudden failure of the transformer when it is out of operation. It is difficult to obtain the status information of the windings online in time. Since the transformer will suffer very fast transient overvoltage (VFTO) impact during operation, combined with the principle of the frequency response method, an online detection method of transformer winding deformation based on VFTO is proposed. In order to study the frequency response characteristics of transformer winding under the impact of VFTO, the generation process of VFTO is simulated by simulation software, and the equivalent circuit model of transformer winding before and after deformation is established. The VFTO signal is injected into the transformer circuit model as an excitation source, and the changes of resonant frequencies of frequency response curve under different deformation types and different deformation degrees of winding are analyzed. The simulation results show that the frequency response curves of different winding deformation types are different. Different deformation degrees are simulated by increasing the radial capacitance by 4%, 13%, and 23%, series inductance by 2%, 4%, and 6%, and longitudinal capacitance by 3%, 6%, and 9%, and the change of resonance frequencies can comprehensively reflect the deformation information of winding. At the same time, the tests of different deformation types and deformation degrees of the simulated winding are carried out. The results show that with the deepening of the change degree of the simulated fault inductance value, the frequency response curve shifts to the low-frequency direction, confirming the feasibility of the online detection method of transformer winding deformation based on VFTO.

5.
Front Microbiol ; 10: 1894, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497000

RESUMO

The human gut is inhabited by diverse microorganisms that play crucial roles in health and disease. Gut microbiota dysbiosis is increasingly considered as a vital factor in the etiopathogenesis of irritable bowel syndrome (IBS), which is a common functional gastrointestinal disorder with a high incidence all over the world. However, investigations to date are primarily directed to the bacterial community, and the gut mycobiome, another fundamental part of gut ecosystem, has been underestimated. Intestinal fungi have important effects on maintaining gut homeostasis just as bacterial species. In the present article, we reviewed the potential roles of gut mycobiome in the pathogenesis of IBS and the connections between the fungi and existing mechanisms such as chronic low-grade inflammation, visceral hypersensitivity, and brain-gut interactions. Moreover, possible strategies targeted at the gut mycobiome for managing IBS were also described. This review provides a basis for considering the role of the mycobiome in IBS and offers novel treatment strategies for IBS patients; moreover, it adds new dimensions to researches on microorganism.

6.
Sci Rep ; 7(1): 10322, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871143

RESUMO

Chronic constipation is a prevalent functional gastrointestinal disorder accompanied with intestinal dysbiosis. However, causal relationship between dysbiosis and constipation remains poorly understood. Serotonin transporter (SERT) is a transmembrane transport protein which re-uptakes excessive 5-hydroxytryptamine (5-HT) from effective location to terminate its physiological effects and involves in regulating gastrointestinal motility. In this study, fecal microbiota from patients with constipation and healthy controls were transplanted into the antibiotic depletion mice model. The mice which received fecal microbiota from patients with constipation presented a reducing in intestinal peristalsis and abnormal defecation parameters including the frequency of pellet expulsion, fecal weight and fecal water content. After fecal microbiota transplantation, the SERT expression in the colonic tissue was significantly upregulated, and the content of 5-HT was decreased which negatively correlated with the gastrointestinal transit time. Moverover, fecal microbiota from the mice which received fecal microbiota from patients with constipation also upregulated SERT in Caco-2 cells. Besides, this process accompanied with the decreased abundance of Clostridium, Lactobacillus, Desulfovibrio, and Methylobacterium and an increased tend of Bacteroides and Akkermansia, which also involved in the impairment of intestinal barrier after FMT. Taken together, intestinal dysbiosis may upregulate the SERT expression and contribute to the development of chronic constipation.


Assuntos
Constipação Intestinal/etiologia , Constipação Intestinal/metabolismo , Suscetibilidade a Doenças , Disbiose , Microbioma Gastrointestinal , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adolescente , Adulto , Animais , Constipação Intestinal/diagnóstico , Constipação Intestinal/fisiopatologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Mensageiro/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...